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Conformal invariance for polymers and percolation 
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Service de Physique Thiorique, CEN Saclay, 91 191 Gif-sur-Yvette Cedex, France 

Received 24 February 1986 

Abstract. We study some conformal invariance properties of the polymer and percolation 
problems in two dimensions. By analysing the transfer matrix spectrum of these models 
at criticality, we identify their series of thermal and magnetic exponents. Our results for 
percolation agree with the recent conjectures of Dotsenko and Fateev while some of our 
results for polymers are different. In the case of polymers, we interpret these series as a 
new set of geometrical exponents. In each case we also discuss the question of corrections 
to scaling. 

1. Introduction 

A statistical system at its critical point is supposed to be not only scale invariant but 
also conformally invariant. This property has some general consequences (valid for 
any dimension D 3 2) which have been known for a long time (Polyakov 1970, Wegner 
1976). 

In the case D = 2 however, the conformal group, which is finite dimensional for 
D > 2, becomes infinite dimensional since it now consists of all the analytic transforma- 
tions. Conformal invariance is thus a much stronger constraint here than in the general 
case and it has many important new implications which have received attention only 
recently (Belavin er a1 1984). 

The general structure of ZD conformal invariant field theories has been studied by 
Belavin er a1 (1984) and we refer the reader to the work of these authors for details. 
We shall simpiy recall here that the different theories are characterised by a single 
dimensionless number, the central charge C. In a given theory, the operators are 
classified into conformal blocks, each block consisting of one ‘primary’ and different 
‘secondary’ operators. The properties of these secondary operators are simply related 
to the properties of the primary ones. 

A discrete series of values of C < 1 has been singled out by Friedan et al (1984) 
who imposed the additional constraint of unitarity. For these values of C, there is a 
finite number of primary operators whose conformal block satisfies the unitarity 
requirement. Their dimensions are given by the Kac (1979) formula. The set formed 
by these operators and their descendants is stable with respect to operator product 
and can be considered as the operator algebra of a critical system. The associated 
physical systems have been identified as the critical and tricritical Ising model, the 
critical and tricritical three-state Potts model and the multicritical models of Andrews 
er a1 (1984) and Huse (1984). For these models the dimensions of all the different 
operators are thus known and the operator algebra and the correlation functions are 
determined (Belavin er al 1984, Dotsenko and Fateev 1984). 
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However, there are many other models like the general O ( n )  or q-state Potts model 
which are not present in the series of Friedan er a1 (1984). The conformal properties 
of these models are not completely known although some of them have been conjectured 
by Dotsenko and Fateev (1984). Of particular interest in this case are the polymer 
and percolation problems which correspond respectively to n = 0 and q = 1. Our 
purpose in this work is to study some properties of these two geometrical models by 
analysing the spectrum of their transfer matrix at the critical point. For doing this we 
shall use some recent results of Cardy (1984, 1985). Let us consider a primary operator 
(Belavin et a1 1984) whose correlation function on the plane is given, using complex 
coordinates 2, Z by 

In this formula, h and 6 are related to the dimension and to the spin of the operator 
@ by d ,  = X* = h f 6 and so = h - 6. By using the logarithmic transformation which 
maps the plane onto a strip of width 1 and periodic boundary conditions, Cardy (1984, 
1985) has shown that it corresponds to the operator CP an infinite number of eigenstates 
of the transfer matrix with eigenvalues A satisfying 

A 2 n  
A 1  

-lOg---(X,+ N +  N) (Z+oO). 

In this formula N, hi are arbitrary integers and A is the largest eigenvalue of the 
transfer matrix. Since one works with periodic boundary conditions, the problem is 
invariant by translations perpendicular to the axis of the strip. The eigenvectors can 
thus be classified according to the value of their momentum K .  As shown by Cardy 
(1984, 1985), the momentum corresponding to ( 2 a )  is 

K = - ( s , + N - N ) .  2 n  
1 

The eigenstates at level ( N ,  N) ( N  or fi # 0) correspond (Cardy 1985) to the secondary 
operators of the conformal block of @ (Belavin et a1 1984). These secondary operators 
are obtained by successive applications of the Conformal generators L-k, and 
their general form is 

- - 
L - k ,  . * L - k , , , L - k i  . . . L - k f , , @  (3) 

where k ,  s . .  . s k,, k :  S . .  . S  k k . .  If N = 1 k, and R = X k ; ,  the dimension of the 
operator ( 3 )  is d,+ N + N and its spin is so+ N - N, in agreement with (2). 

By studying the transfer matrix spectrum one thus sees how one can obtain the 
dimensions of the different operators of the theory. In the following, we will mainly 
be interested in the determination of the thermal and magnetic series for the polymer 
and percolation problems. 

In 0 2  we consider the polymer (self-avoiding walk) problem. In this case the 
transfer matrix has a simple structure and we identify a rather large number of 
dimensions corresponding to two different series. Our results for the magnetic series 
agree with the conjecture of Dotsenko and Fateev (1984) while our results for the 
thermal series do not. From these dimensions we deduce a new infinite set of 
geometrical exponents. These exponents give for any value of r the asymptotic 
behaviour of the number of r polymers of length 4' which are attached by their 
extremities. 
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In 9 3 we study the percolation prolem. The transfer matrix in this case has a 
structure which is more complicated and we are just able to identify the first exponents 
of the thermal and magnetic series. These agree here with the conjecture of Dotsenko 
and Fateev (1984). 

In each case we also discuss the problems of corrections to scaling. 

2. The self-avoiding walk problem 

2.1. General considerations 

It is well known that the problem of self-avoiding walks (polymers) on a regular lattice 
can be obtained by the analytic continuation to n = 0 of the Heisenberg model with n 
component classical spins (de Gennes 1972). If the Hamiltonian of the magnetic 
system is 

where s, is a n-component vector with E:=, (s:)’ = n, the partition function in the limit 
n 0 becomes (Sarma 1978, Gujrati 1981) 

P= r 

In this formula a,, is the number of configurations of r non-intersecting self-avoiding 
walks of total length t o n  the lattice of S spins. In the limit n + 0 the critical temperature 
of the model (4) becomes 7‘= ( pc)-’  = k where p is the connectivity constant of the 
lattice. 

We shall first study some properties of (5).  In zero magnetic field all configurations 
with r 3 1 polymers have a null weight so the partition function (5) becomes simply 

Z( p, H = 0 )  = 1 ( 6 0 )  

giving a free energy 

f = ( l / s )  log z =o .  ( 6 6 )  

The result ( 6 b )  provides a simple way of determining the value of the central charge 
C for the self-avoiding walk problem. It has indeed been shown recently by Blote et 
a1 (1986) that the finite-size corrections to the free energy per site f’) of a strip of 
width 1 and periodic boundary corrections are given at the critical point by 

f ( I ’  = f + .rrC/612 (7 )  

where f is the free energy in the thermodynamic limit. Since formula ( 6 b )  is also valid 
on strips and for any tempeature, we deduce from (7) that the value of C in this case 
is C = 0, a result which agrees with the formula of Dotsenko and Fateev (1984), giving 
C ( n )  for the model (4) in the case n = 0. 

We note, however, that one can define a non-zero free energy for the self-avoiding 
walk problem by considering instead o f f  

( 8 a )  
f ’= l im-=- (n  f a f  =O) 

n - o n  a n  
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which has a geometrical interpretation (Sarma 1978, Gujrati 1981) 

In this formula o: is the number of self-avoiding polygons of length e per lattice site. 
The corresponding quantities f'") for strips of width 1 then converge at the critical 
point p = p' as 

and the corrections to scaling are determined in this case by C ' = a C / J n ( n  =O) .  We 
have calculated the f'"' using the transfer matrix technique already introduced in 
Enting (1980), Klein (1980) and Derrida (1981). The lattice is the square lattice for 
which the critical point is determined with a good precision p'=p;h= 
0.379 0528 k 0.000 0025 (Enting and Guttman 1985). We have done all our calculations 
with this estimate of p' and our results are given with an accuracy which is not sensitive 
to the uncertainty of p'. (It is also possible to work on the hexagonal lattice for which 
p' is known exactly (Nienhuis 1982a, b). The results in this case are very similar to 
those obtained with the square lattice but the strip widths 1 are more limited so we do 
not present these results here.) The same remarks apply to all the calculations of this 
paper. The f'"' and successive estimates of C' obtained by comparing f"" and f'('+') 
are given in table 1 for different values of 1. As can be seen, these estimates converge 
rapidly to the value 

ac 5 
Jn 3rr 

C'=-( n = 0) =- = 0.530 516 

obtained with the result of Dotsenko and Fateev (1984), thus confirming the conjecture 
of these authors. Values of C ( n )  have also been calculated by Blote er a1 (1986) in 
the case of the n-component cubic model. 

Table 1. In this table we give the values off'"' (86)  at the critical point p' = pi; and the 
estimates of C '=  J C / J n ( n  = O )  obtained by comparing f'"' and f'"+" using (9). The 
expected value is the result of Dotsenko and Fateev (1984). 

1 f , ( I 1  JC 
C' = -( n = 0) 

Jn 

2 0.12006 
3 0.070 68 
4 0.054 72 
5 0.047 79 
6 0.044 17 
7 0.042 03 
8 0.040 66 
9 0.039 73 

10 0.039 06 
11 0.038 57 

0.678 92 
0.627 12 
0.588 24 
0.566 17 
0.554 12 
0.547 26 
0.543 06 
0.540 3 1 
0.538 39 

Expected value 
C _- -0.530516 

37r 
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When H is non-zero, the partition function (5) can be calculated with the transfer 
matrix technique recently introduced in Saleur and Derrida (1986). The method is a 
simple generalisation of what has already been done by Enting (1980), Klein (1980) 
and Derrida (1981) with the main difference that there are now several polymers on 
the strip. In this case the possible configurations at one column of the strip are defined 
by the pairs of sites which are related together by the left part of the strip and by all 
the sites which are extremities of polymers whose other extremity is in the left part of 
the strip. 

The matrix elements between these configurations depend now on /3 and H. If 
H = 0, the largest eigenvalue of this transfer matrix is A = 1, which corresponds to 
( 6 a )  while the other eigenvalues describe the fall-off of different correlations. Since 
one cannot go from one column to the next by adding extremity sites which would 
imply some factors H,  the transfer matrix takes a simple 'blockwise triangular' structure. 
For determining the complete spectrum, it suffices then to diagonalise submatricest 
M, acting on configurations with r extremity sites, which corresponds to r non- 
intersecting very long polymers present on the strip. In § 2 we study the largest 
eigenvalue of the matrices M ,  while we give some details for the complete spectrum 
of M2 in 0 3. 

2.2. Study of the largest eigenvalue of the matrices M ,  

The transfer matrix M ,  has already been considered in Derrida (1981) and Saleur and 
Derrida (1986). In the limit n + 0, the spin-spin correlation of the model (4) can be 
written 

where the are graphs formed by a self-avoiding walk of length e with extremities 
in i and j .  

The largest eigenvalue A I  of the transfer matrix with one polymer M ,  thus gives 
the fall-off of the spin-spin correlation on the strip. At the critical point p' it is related 
to the dimension X H ,  of the spin operator by 

The value of this dimension has already been found by Saleur and Derrida (1986) to 
be in good agreement with the conjectured value (Nienhuis 1982a) X,, = &, This can 
also be checked in the first column of table 2. In a similar way, because of formula 
( 8 b ) ,  the largest eigenvalue of the transfer matrix with two polymers M ,  gives the 
dimension of the energy operator 

As can be seen in the first column of table 4, the results obtained in this way are in 
agreement with the conjectured value (Nienhuis 1982a) XT,  = f .  

t The matrices M, depend naturally on the width I but for clarity we do not indicate it explicitly. 
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Table 2. Dimensions x2,-, obtained with the largest eigenvalues of the matrices M , , - ,  
using formula (19). 

I x(Il  x:” x(lJ x:” Xb” 

1 0.1544 
2 0.1292 
3 0.1165 1.389 
4 0.1108 1.493 
5 0.1081 1.505 3.860 
6 0.1068 1.565 4.093 
7 0.1060 1.578 4.236 7.565 
8 0.1056 1.586 4.330 7.928 
9 0.1053 1.592 4.394 8.181 12.506 

10 0.1050 1.595 4.439 8.365 12.997 
11 4.412 8.502 13.368 
12 8.607 13.654 
13 13.878 
14 14.057 

Table 3. Successive ‘a posteriori’ estimates obtained from table 2. The conjectured values 
correspond to the magnetic series of Dotsenko and Fateev (1984) (see formula (18)). 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

0.0086 
0.0978 
0.1034 1.619 
0.1043 1.611 
0.1044 1.609 
0.1044 1.608 
0.1043 1.607 
0.1042 1.606 

4.664 
4.642 
4.630 9.236 
4.623 9.202 
4.619 9.177 15.335 

9.160 15.291 
15.252 
15.226 

Identified x , ,=g  X H 1 = g  xH3=$$ XHe=Z X , < = g  
dimensions =0.1042 = 1.6042 =4.6042 =9.1042 = 15.1042 

Formulae (12) and (13) have a simple generalisation. Let us take, for example, 
the matrix M ,  and define the operator +, which is a local product of an  energy and 
a spin: 

= srI * (stz sl3)  +permutations (14) 
where i, , i2 ,  i3 are some fixed points in the neighbourhood of i. We consider now the 
correlation function 
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Table 4. Dimensions x2! obtained with the largest eigenvalue of the matrices M,, using 
formula (21). 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11  
12 
13 
14 

0.6176 
0.6570 
0.6664 2.470 
0.6689 2.639 
0.6698 2.732 
0.6695 2.787 
0.6693 2.822 
0.6691 2.846 
0.6689 2.862 

2.874 

5.582 
5.856 
6.053 9.881 
6.190 10.308 
6.289 10.620 15.440 
6.361 10.854 15.995 
6.416 11.033 16.426 

11.173 16.766 
17.038 

where abcd E [ l ,  n]. In the limit n-0, a term like (16) is calculated (Sarma 1978, 
Gujrati 1981) by contracting pairs of spins with the same component index and by 
drawing non-intersecting polymers relating the points whose spins have been contrac- 
ted, with a factor p for each polymer link. The different types of graphs are also 
weighted by different powers of n. This finally gives a formula similar to (11): 

where the graphs 9; consist of a polymer relating one i to one j ,  the other i being 
related by a second polymer and the other j by a third one while the graphs g3 consist 
of three polymers, each relating one i to one j. Because of ( l l ) ,  the first term of (17) 
corresponds to spin-spin correlations. If one writes the short distance expansion of 
the product ES - s + . . . one can then interpret the second term of (17) as describing 
the correlations of a new operator generated in the product ES. The largest eigenvalue 
of M3 gives then the dimension of this operator by a formula similar to (12) and (13). 
An argument of the same type applies to the other matrices Mp.  

Dotsenko and Fateev (1984) have conjectured that the magnetic operators which 
are generated in the product of the spin with several energies belong to the conformal 
blocks of @ 3 , 2 , , + l , 2 .  (We denote by @)p ,q  the primary operator in the degenerate 
representation indexed by p and q. We follow Dotsenko and Fateev (1984) by 
introducing half-integer indices, although their meaning is not yet clear.) The dimension 
of @ 3 / 2 , r + l , 2  is given by the Kac formula (1979) with C = O  

9(2t - 1)2 - 4 
48 ’ 

xH, = 2 h 3 / 2 , r + 1 ! 2  = 

Like the dimension XH, which was obtained by the transfer matrix with one polymer 
M I ,  we have obtained the dimensions XH, by considering the largest eigenvalue of 
the matrices Mz,-l with 2 t  - 1 polymers. In table 2 we give the values of 

og = - - 1 
1 

2T 
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for different widths 1 up  to t = 5. In  table 3 we give the corresponding ‘ a  posteriori 
estimates’ which are obtained by assuming a pure power law convergence of the 
for three different sizes and  then extrapolating to 1 =CO (Derrida and Stauffer 1985). 
As can be seen from these tables, the results converge rapidly to the values xz r - ,  = X H ,  
of (18), thus confirming the conjecture of Dotsenko and Fateev (1984) for the magnetic 
series?. 

In  the same way, Dotsenko and Fateev (1984) have also conjectured that the thermal 
operators which are generated in the product of several energies belong to the blocks 
of @ 2 r + l , l .  The corresponding dimensions are 

(4t-1)2-1 
12 . 2h,l+,,I = 

We have already seen in (13) that the largest eigenvalue of M 2  gives the dimension of 
the energy operator, in agreement with X ,  = 2h3 , ,  = 5. However, the other dimensions 
which are deduced from the largest eigenvalue of the matrices M Z ,  by 

1 x(’) - -- 2 1  - log Ai‘,) 
27r 

d o  not agree with ( 2 0 ) ,  as can be seen in tables 4 and 5 .  On the contrary, these 
dimensions are in good agreement with another line of the conformal grid (see table 
6 )  corresponding to 

X ,  = ~ 2 1 ~  2h3,1+2. ( 2 2 )  
This numerical study thus confirms the magnetic series of Dotsenko and  Fateev (1984) 
but gives a thermal series which disagrees with the conjecture of these authors. It is 
possible however that the values (20) are present in the rest of the spectrum of the 
matrices M 2 1 .  We shall thus give in the following some details of the spectrum of M 2 .  

Table 5. A posteriori estimates corresponding to table 4. The identified dimensions are 
2h3,,+* of table 6 (see the text and formula (22)). 

3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 
13 

0.6698 
0.6706 
0.6698 2.904 
- 2.936 
0.6698 2.929 6.760 
0.6682 2.925 6.731 
0.6675 2.923 6.712 12.095 

2.922 6.701 12.056 
6.692 12.023 18.957 

12.001 18.908 
18.864 

Identified X,, =: X, = X,, = f xT4=$y XT,’$ 
dimensions = 0.6667 = 2.9167 = 6.6667 = 11.9167 = 18.6667 

‘F This can be seen more precisely by using a graphical extrapolation of the data in table 2, as has already 
been done by Saleur and Derrida (1986) in the particular case of X,, . For brievity, we do not present such 
extrapolations here, the a posteriori estimates for the largest widths already being very close to the limiting 
values. 
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Table 6. Values of the conformal dimensions h,, obtained by the Kac formula in the case 
C = 0: hp,q = [(2p - 3q)’- 11/24. Note that certain authors (Ftiedan et a/  1985) use hq,, 
for what is denoted here by h,,q. 

3 4  5 6 7 

1 0 518 2 3318 7 8518 15 
2 0 l / 8  1 21/8 5 65/8 12 
3 113 -1124 113 35/24 1013 143124 2813 
4 1 118 
5 2 518 hp+Lq+Z = hp,q 

2.3. Spectrum of the transfer matrix M2 

We now present some details concerning the spectrum of M 2 .  We have already 
mentioned that the problem is left invariant by translations perpendicular to the axis 
of the strip. In fact, the problem is also invariant by symmetry with respect to this 
axis. The eigenspaces can thus be classified by I K 1 only and the eigenvalues for I K I Z 0 
are twice degenerated (this corresponds to the exchange of h6 or N N  in formulae 
(1)-(3)). In tables 7-9 we study the first few dimensions deduced from the spectrum 
of M2 at IK( = 0, 27r/ l ,  47r/1. (For brevity we have simply given the last a posteriori 
estimates.) We have already identified the first dimension of table 7 as X , ,  the 
dimension of the energy E .  In tables 7-9, we also observe this value shifted by different 
integers, corresponding to the other operators of the energy block (3). The second 
dimension of table 7 is identified with X, + 2, the first and third dimensions of table 
8 with Xrl + 1 and Xrl + 3 and the second dimension of table 9 with X ,  + 2. 

Table 7. A posteriori estimates of the first few dimensions deduced from the spectrum of 
M, at K = O .  

7 0.6698 2.704 4.064 5.781 
8 0.6682 2.689 4.025 5.244 

4.014 4.906 9 0.6675 2.681 

Identification of 
the dimensions XT, = 0.6667 X T ,  + 2 = 2.6667 4 d + l  

Table 8. As table 7 for IKI = 2n/ / .  

I 

5 1.691 3.020 3.553 4.103 
6 1.693 3.016 3.595 4.071 
7 1.690 3.014 3.634 3.826 

Identification of 
the dimensions X , + 1 = 1 . 6 6 6 7  3 XT, + 3 = 3.6661 d - 3.5 
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Table 9. As fable 7 for IKI = 47r//. 

I 

5 1.967 3.017 3.703 5.118 
6 2.067 2.843 3.871 4.885 
7 2.053 2.759 3.920 4.7785 

Identification of 
the dimensions 2 XTl + 2 = 2.6667 4 d + l  

- 

In tables 7-9 are also present integer dimensions corresponding to some members 
of the identity block. The smallest one is the first dimension of table 9 which we 
identify with d = 2 .  The associated operators are L 2 1  - T and L-21 - T where T is 
the stress-energy tensor (Cardy 1985). We also observe this value shifted by integers 
like d = 3 in table 8 or d = 4 in tables 7 and 9 ( d  = 1 is not observed since L - , I  = L - l l  = 

0). 
Beside the dimensions corresponding to the energy and the identity blocks, we 

have also observed many other dimensions in the spectrum of M 2 .  For example the 
fourth column of table 8 corresponds to a new operator of spin s = 1 and dimension 
d = 3.50. In tables 7 and  9 one can also observe this value shifted by 1. It is difficult 
to extrapolate the results obtained with eigenvalues which are too far in the spectrum 
since the estimates converge more and more slowly and we have not been able to 
classify the new dimensions in series analogous to (18) or ( 2 2 ) .  We note simply that 
the complete spectrum seems to be very rich. 

A curious feature is that the operator QS,, which was conjectured by Dotsenko and 
Fateev (1984) to be generated in the product of two energies is not present in our 
spectrum. We have already mentioned that the dimension 2hs,1 = 4 is not observed by 
looking at  the largest eigenvalue of the matrices M 2 t .  In  a similar way, this dimension 
is not present in the rest of the spectrum of M2 and we have reached the same conclusion 
for the other M,. We have indeed observed the value d = 4 in tables 7-9, but we have 
obtained it only once and  we have shown that it corresponds to an operator of the 
identity bock, namely L-2L-21  which is present in any case (Cardy 1985). If C D ~ , ~  was 
present we should observe d = 4 twice, as will be the case for percolation (see 0 3). It 
should be interesting to understand whether Qs,l  is indeed not present in the operator 
algebra of the self-avoiding walk problem or whether our transfer matrix does not 
contain all the operators. 

2.4. Corrections to scaling for the self-avoiding walk problem 

We can now discuss the question of corrections to scaling in the self-avoiding walk 
problem. It is well known (Wegner 1972) that the presence of irrelevant thermal 
operators gives corrections to the power law behaviour of the different quantities at 
the critical point. For example the singular part of the free energy (8) near p = p' is 

where A is the first corrections to scaling exponent. A is related to the dimension X 
of the corresponding irrelevant operator by A = - Yv = ( X  - 2 )  v (- Y is also denoted 
by w in the literature). We note here that non-linearities in the scaling fields can also 
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produce corrections to scaling (Aharony and Fisher 1983). This gives additional 
corrections to (23), the most singular being a term (/3 - / 3 c ) 2 - o i + l .  

The determination of A by a direct analysis of numerical data is a difficult problem 
(Privman and Fisher 1983). For example in the case of the three-state Potts model, 
the analysis of different authors give a value A = 0.57 i 0.13 (Adler and Privman 1982 
and references therein) while the conformal invariance theory, which provides a 
complete picture of this model at criticality (Dotsenko 1984), gives A=$=O.667, a 
value which is rather different from this estimate, although it is compatible with the 
error bars. 

For models which are not completely solved by the conformal invariance theory 
(like polymers on percolation), it is possible to get information on the dimensions of 
the different operators by studying the transfer matrix spectrum (see formula (2)) .  
This should be an  easier way to determine A than analysing confluent singularities in 
a series expansion. For the polymer problem we have found two different irrelevant 
thermal operators whose dimensions correspond to values of A smaller than one. These 
dimensions are X ,  + 2 = f ,  giving A' = = 0.5 and X ,  = 3 giving A = +i = 0.687. However 
the dimension X T , + 2  corresponds to the operator L - , L - , E - - V ~ E  which is a total 
derivative and  cannot contribute to corrections to scaling (Cardy 1986). We are thus 
left with a single candidate A =E. 

The numerical estimates of the literature range from A = 0.5 to A = 1 (Adler 1983, 
Djordjevic et a1 1983, Privman 1984, Rapaport 1985, Enting and  Guttman 1985). This 
is in reasonable agreement with this value. 

2.5. Geometrical interpretation of the thermal and magnetic series for the self-avoiding 
walk problem 

It is well known that the first magnetic exponent X H ,  = 7712 has a simple geometrical 
meaning. 

We have already mentioned in formula ( 1  1 )  that the spin-spin correlation (s, s,) 
is related by a Laplace transform to the number of self-avoiding walks with extremities 
in i and j ,  olC(li - j l ) .  From the asymptotic form of this correlation function 

one can obtain (Sarma 1978, Gujrati 1981) by inverting ( 1 1 )  

(with p - I =  P ' ) .  Integration then gives the number of self-avoiding walks of length e 
per lattice site 

( 2 4 4  w l p - p ~ p ( 2 - " ) ~ - l  - - & Y - l  

where we have used the scaling relation y /  v = 2 - 7. 
In the same way the study of energy-energy correlations gives the asymptotic form 

of the number of self-avoiding polygons of length P per lattice site (Sarma 1978, 
Gujrati 1981) 
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where we have used the hyperscaling relation 2 -a = 2v. From (25a) we deduce the 
number of configurations of two polymers each of length t? which are attached by their 
extremities 

(256) 2e 0 - 2  
w 2 P - p  9 

These formula have a simple generalisation. Let us consider the correlation function 
defined by 

= pf"g,' (26) 
Y 

where the 9, are graphs formed by r non-intersecting self-avoiding walks relating a 
fixed neighbourhood of i to a fixed neighbourhood of j .  This correlation function 
calculated on strips has an exponential decay exp(-li - j l / t )  with 6"' = -(log A;'')-' 
and -( 1/2.rr)  log A!')= x, (see (19) and (21)). The correlation function (26) thus decays 
on the plane like ii-jl-2"r. By an argument similar to (24) we deduce then that the 
number of configurations of r non-intersecting self-avoiding walks of total length f l  
which relate fixed neighbourhoods of two different points i and j behaves like 

If we fix now the length of each polymer I , ,  . . . , I , ,  XIi =e' we expect the corresponding 
number of configurations to have the scaling form 

3) 
e l '  

Taking t?, = . . . = e, = t? and integrating with respect to j gives then the number of 
configurations of r polymers each of length k' which relate fixed neighbourhoods of 
two different points 

We have defined these numbers using fixed neighbourhoods of points i and j because 
we worked on a lattice and it is not possible in this case to put polymers starting from 
one point with no other intersection if r is large enough. Naturally the exponent of 
(28) does not depend on the precise way the polymers behave in the neighbourhood 
of i and j and we can reformulate (28) by saying that U,! gives the number of 
configurations of r polymers of length e which are attached by their extremities. It 
would be interesting to evaluate these w,[ by continuum models (des Cloizeaux and 
Jannink 1986, Duplantier 1986). 

3. The percolation problem 

The bond percolation problem can be obtained by the analytic continuation to q = 1 
of the q-state Potts model (see Wu 1982 and references therein). If the Hamiltonian 
of the magnetic model is 

P%= -P  c (&, - 1) - I-f c a , ,  (29) 
( I J )  I 
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where the U, are Potts variables ranging from 1 to q, the partition function in the limit 
q + 1 becomes 

Z ( P ,  H ) = C  (1 -e-P)Bo(e-P)B'fl  ( q -  1 +eH)S+. (30) 

In this formula the sum is taken over bond percolation graphs 9 with Bo occupied 
bonds and Be empty bonds. The product is over all the clusters of 9 (including isolated 
sites) and S6 is the number of sites in the cluster %. 

The partition function (30) corresponds to a bond percolation problem with 
occupancy probability p = 1 -e-'. In the limit q + 1 the model (29) is thus critical at 
P ' =  -log( 1 - p c )  where p c  is the percolation threshold. 

.9 B 

In zero magnetic field, the partition function (30) is simply 

2 - 2 8  (31) 

where B is the total number of bonds. Since this result is in fact independent of the 
geometry and the temperature, we deduce in a way similar to ( 6 )  and ( 7 )  that the 
central charge C is zero for the percolation problem, a result which agrees with the 
conjecture of Dotsenko and Fateev (1984) giving C ( q )  for the model (29) in the case 
for q = 1. For calculating (30) one can use the transfer matrix method already intro- 
duced in Blote et a1 (1981), Blote and Nightingale (1982) and Nightingale and Blote 
(1983). In the case H = 0, the matrix breaks into two submatrices, a matrix M acting 
on configurations with at least one site connected to the 'ghost site' and a matrix M' 
acting on configurations with no site connected to the ghost site. 

Blote and Nightingale (1982) and Nightingale and Blote (1983) have shown that 
M describes correlations of spin type while M '  describes correlations of energy type. 
The first dimensions which are deduced from the eigenvalues of these two matrices at 
momentum K = O  are given in tables 10 and 12 while the corresponding a posteriori 
estimates are given in 11 and 13. The lattice is the square lattice for which the threshold 
is known exactly p' = i. 

Table 10. Dimensions deduced from the first eigenvalues of the matrix M at K = 0 

I 

2 0.1109 0.773 
3 0.1077 1.197 1.590 1.590 
4 0.1060 1.315 1.768 1.768 
5 0.1052 1.390 1.867 2.504 
6 0.1048 1.440 1.928 2.721 
7 0.1046 1.474 1.967 2.880 
8 0.1045 1.498 1.995 2.997 

The results of the first column of tables 10 and 11 are in agreement with X H ,  = i v  = & 
(Nienhuis er a1 1980). This dimension has already been studied by Derrida and de 
Skze (1982) and Derrida and Stauffer (1985). In a similar way the results of the first 
column of tables 12 and 13 agree with X ,  = 2 - 1/ v = 2 (den Nijs 1979). This confirms 
in an independent way the validity of hyperscaling for percolation which has been 
recently discussed by Jug (1985). 
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Table 11. A posteriori estimates corresponding to table 10. The identification of the 
dimensions is explained in the text. 

I 

0.0991 1.42 1 
0.1031 1.756 2.164 
0.1043 1.684 2.131 4.394 
0.1042 1.649 2.118 3.913 
0.1042 1.635 2.112 3.756 

Identified XH> = A  XH2 = s XH,+2  xH:+2 
dimensions =0.1042 = 1.6042 = 2.1042 = 3.6042 

Table 12. Dimensions deduced from the first eigenvalues of M’ at K = 0. 

3 1.026 2.284 
4 1.010 2.110 2.648 3.135 
5 1.142 2.388 2.810 3.420 
6 1.169 2.575 3.082 3.602 
7 1.187 2.709 3.219 3.723 
8 1.199 2.806 3.325 3.807 
9 1.208 2.879 3.409 3.865 

Table 13. A posteriori estimates corresponding to table 12. The identification of the 
dimensions is explained in the text. 

I 

1.288 
1.269 3.600 4.697 4.323 
1.26 1 3.477 4.420 4.219 
1.256 3.388 4.270 4.159 
1.254 3.303 4.161 4.1 13 

Identified 
dimensions X , = 2 = 1 . 2 5  XT,+2=3 .25  X,=4 4 

The magnetic series for the percolation problem has been conjectured by Dotsenko 
and Fateev (1984) to be 

X H ,  =2h3,z.t+1/z= ( g ( 2 r -  1)’-4)/48. ( 3 2 )  
The second dimension of table 11 is in good agreement with the value X H ,  deduced 
from ( 3 2 ) .  In table 11 one can also verify the presence of X H ,  + 2 and X ,  + 2. Since 
the matrix does not break into several submatrices as was the case for polymers it is 
difficult to identify the next dimensions ( 3 2 )  in the spectrum and we do not present 
them here. 

The thermal series of Dotsenko and Fateev (1984) is a line of the conformal grid 
in table 6 

XT,=2hl , ,+ l= [ (3 t+1)2 -1 ] /12 .  (33)  
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In table 13 we identify, beside X ,  + 2, two dimensions in agreement with the value 
d = 4. One of them corresponds to X ,  (33) and the other is the dimension of LZe-J 
(Cardy 1985) which was also observed for the self-avoiding walk problem. As was 
the case for the magnetic series, it is difficult to identify the following terms of the 
series (33) in the transfer matrix spectrum. 

Although we have just identified the beginning of the series (32) and (33) we think 
that our results confirm the conjectures (32) and (33) of Dotsenko and Fateev (1984) 
for the q-state Potts model in the case q = 1. Our results also confirm the general 
picture of the percolation transition which has been recently discussed by Jug (1985). 
We should finally mention that we have obtained very similar results for the site 
percolation problem. 

We can turn now to the question of the corrections to scaling in percolation. The 
values of A which have been found by different numerical methods range from 1.2 to 
1.8 (Adler et al 1983 and  references therein). 

Before the dimension already found by Nienhuis (1982b), X, = 4, which corre- 
sponds to A = = 2.67, the only dimension we have found in the transfer matrix spectrum 
is X T I + 2 = $ .  This gives a value A ’ = $ =  1.67 in good agreement with numerical 
estimates. Unfortunately for the same reasons as for the self-avoiding walk problem, 
we d o  not expect the corresponding operator to contribute to corrections to scaling. 
It is not clear to us whether we have not found all the operators or whether the 
experimental values of A can be explained by numerical difficulties or  non-linear effects 
in the corrections. 

4. Conclusion 

We have shown how the numerical study of the transfer matrix spectrum at the critical 
point can give some information on models which are not completely solved by the 
conformal invariance theory. In this work we have mainly studied the thermal and 
magnetic series for the polymer and percolation problems. A curious feature is that 
these two models have the same central charge C = 0. Moreover, although they are 
believed to belong to different universality classes, they possess the same infinite series 
of magnetic exponents while their thermal series are given by two different lines of 
the conformal grid of table 6. It would be interesting to see whether there is a precise 
geometrical correspondence between these two problems which could explain these 
analogies. 
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